Asymptotic Statistics for Extremes: Axel Bücher
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Axel Bücher
Talk Title: On the Disjoint and Sliding Block Maxima method for piecewise stationary time series
Abstract: Modeling univariate block maxima by the generalized extreme value distribution constitutes one of the most widely applied approaches in extreme value statistics. Next to maximum likelihood, estimation based on matching probability weighted moments provides the most common estimation strategy, in particular for negative shape parameters. Within a traditional sampling scheme and a new sampling scheme involving certain piecewise stationarities, it is shown that the latter estimator may be improved by calculating block maxima in an overlapping way. Irrespective of the serial dependence, the estimation variance is shown to be smaller for the new estimator, while the bias often stays the same or varies comparably little. The results are illustrated by Monte Carlo simulation experiments and are applied to a common situation involving temperature extremes in a changing climate.
This talk is an invited talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.