Bayesian Extremes: Likun Zhang
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Likun Zhang
Talk Title: Spatial scale-aware tail dependence modeling for high-dimensional spatial extremes
Abstract: Extreme events over large spatial domains like the contiguous United States may exhibit highly heterogeneous tail dependence characteristics, yet most existing spatial extremes models yield only one dependence class over the entire spatial domain. To accurately characterize ‘storm dependence’ in analysis of extreme events, we propose a mixture component model that achieves flexible dependence properties and allows truly high-dimensional inference for extremes of spatial processes. We modify the popular random scale construction that multiplies a Gaussian random field by a single radial variable; that is, we add non-stationarity to the Gaussian process while allowing the radial variable to vary smoothly across space. As the level of extremeness increases, this single model exhibits both long-range asymptotic independence and short-range weakening dependence strength that leads to either asymptotic dependence or independence. Under the assumption of local stationarity, we make inference on the model parameters using local Bayesian hierarchical models, and run adaptive Metropolis algorithms concurrently via parallelization. Then, after conducting posterior inference locally, the mixture component representation of the model coherently ties the local posteriors together to obtain a globally nonstationary model
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.