Climate Extremes: Jonathan Koh
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Jonathan Koh
Talk Title: Spatiotemporal wildfire modeling through point processes with moderate and extreme marks
Abstract: Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. We study daily summer wildfire data for the French Mediterranean basin during 1995--2018. We jointly model occurrence intensity and wildfire sizes by combining extreme-value theory and point processes within a Bayesian hierarchical model. The occurrence component models wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical marks attached to points, and we consider fires with marks exceeding a high threshold as extreme. The size component is a two-component mixture varying in space and time that jointly models moderate and extreme fires. We capture non-linear influence of covariates (Fire Weather Index, forest cover) through component-specific smooth functions, which may vary with season. To reveal common drivers of different aspects of wildfire activity, we share random effects between model components to improve interpretability and parsimony without compromising predictive skill. Stratified subsampling of zero counts is implemented to cope with large observation vectors. We compare and validate models through predictive scores and visual diagnostics. Our methodology provides a holistic approach to explain and predict the drivers of wildfire activity and their associated uncertainties.
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.