Flood Risk: Juliette Legrand
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Juliette Legrand
Talk Title: Evaluation of binary classifiers for extremes
Abstract: Machine learning classification methods usually assume that all possible classes are sufficiently present within the training set.
Due to their inherent rarities, extreme events are always under-represented and classifiers tailored for predicting extremes need to be carefully designed to handle this under-representation.
In this paper, we address the question of how to assess and compare classifiers with respect to their capacity to capture extreme occurrences.
This is also related to the topic of scoring rules used in forecasting literature. In this context, we propose and study a risk function adapted to extremal classifiers.
The inferential properties of our empirical risk estimator are derived under the framework of multivariate regular variation.
As an example, we study in detail the special class of linear classifiers and show that the optimisation of our risk function leads to a consistent solution.
A simulation study compares different classifiers and indicates their performance with respect to our risk function.
To conclude, we apply our framework to the analysis of extreme river discharges in the Danube river basin.
The application compares different predictive algorithms and test their capacity at forecasting river discharges from other river stations.
As a byproduct, we identify the explanatory variables that contribute the most to extremal behavior.
This is joint work with Philippe Naveau and Marco Oesting.
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.