Juraj Bodik EVA Talk Preview
From Anna Munro
views
comments
From Anna Munro
This talk has captions. You can remove these by pressing CC on the video toolbar.
Name: Juraj Bodik
Talk Title: Detection of causality in time series using extreme values
Abstract: We deal with the following problem: Let us have two stationary (possibly nonlinear) time series with heavy-tailed marginal distributions. We want to detect whether there is some Granger causality present. Even more, we want to determine the minimal lag, i.e. the time how much it takes for information to travel from one time series to another. We will examine the asymmetry in extremes between the cause and effect, and present a statistic that can estimate such asymmetries. The basis of the idea stands by the so-called causal tail coefficient for time series, which in some way represents the behaviour in extremes of one series conditioned on the presence of an extreme in the other.
This talk is a contributed talk at EVA 2021. View the programme here.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.