One World Waves - F Dhaouadi
From Greg McCracken
views
comments
From Greg McCracken
In this talk, I will present an approximate first-order hyperbolic model for the hydrodynamic form of the defocusing nonlinear Schrödinger equation (NLS). This Euler-Korteweg type system can be seen as a Euler-Lagrange equation to a Lagrangian submitted to a mass conservation constraint. Due to the presence of dispersive terms, such a Lagrangian depends explicitly on the gradient of density. The idea is to create a new dummy variable that accurately approximates the density via a penalty method. Then, we take its gradient as a new independent variable and apply Hamilton's principle.
I will explain the main ideas behind the method, how the resulting system is hyperbolic, and present some obtained numerical results for gray solitons and dispersive shockwaves.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.