Stanislav Volgushev EVA Talk Preview
From Anna Munro
views
comments
From Anna Munro
This talk has captions. You can remove these by pressing CC on the video toolbar.
Name: Stanislav Volgushev
Talk Title: Tree structure learning for extremes
Abstract: Extremal graphical models are sparse statistical models for multivariate extreme events. The underlying graph encodes conditional independencies and enables a visual interpretation of the complex extremal dependence structure. For the important case of tree models, this talk will discuss a data-driven methodology for learning the graphical structure. We show that sample versions of the extremal correlation and a new summary statistic, which we call the extremal variogram, can be used as weights for a minimum spanning tree to consistently recover the true underlying tree under very general assumptions. Remarkably, this implies that extremal tree models can be learned in a completely non-parametric fashion by using simple summary statistics and without the need to assume discrete distributions, existence of densities, or parametric models for bivariate distributions.
This talk is an invited talk at EVA 2021. View the programme here.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.