Time Series: Nehali Mhatre
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Nehali Mhatre
Talk Title: Transformed-Linear Models for Time Series Extremes
Abstract: In order to capture the dependence in the upper tail of a time series, we develop non-negative regularly-varying time series models that are constructed similarly to classical non-extreme ARMA models. We first investigate consistency requirements among the finite-dimensional collections of the elements of a regularly-varying time series. We define the tail pairwise dependence function (TPDF) to quantify the extremal dependence between two elements of the regularly-varying time series, and use the TPDF to define the concept of weak tail stationarity for regularly-varying time series. To develop our non-negative regularly-varying ARMA-like time series models, we use transformed-linear operations. We show existence and stationarity of these models and develop their properties, such as the model TPDF's. Motivated by investigating conditions conducive to the spread of wildfires, we fit models to hourly windspeed data and find that the fitted transformed-linear models produce better estimates of upper tail quantities than alternative models.
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.