Xuan Leng EVA Talk Preview
From Anna Munro
views
comments
From Anna Munro
Name: Xuan Leng
Talk Title: Extreme Conditional Quantiles for Panel Data Model with Individual Effects and Heteroscedastic Extremes
Abstract: Panel quantile regression models play an important role in real applications of finance, econometrics, insurance and risk management. However, direct estimates of the extreme conditional quantiles may lead unstable results due to data sparsity on the tail regions. Moreover, the presence of individual effects complicates the inference for extreme quantiles and a study on their theoretical properties is necessary. This paper proposes a two-stage method to estimate/predict the extreme conditional quantiles where an intermediate quantile is first estimated according to panel regression models and the extrapolation of the intermediate quantile to an extreme quantile is carried out in the second stage. Under a set of second-order regular variation conditions of heteroscedastic extremes, we establish the asymptotic theories for the two-stage prediction while its finite sample performance is demonstrated and compared to the direct prediction by simulations. Finally, we apply the two-stage method to the macroeconomic and housing price data, and find strong evidence of housing bubbles and common economic factors as well as the cross country heterogeneity.
This talk is a contributed talk at EVA 2021. View the programme here.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.