Yun Li EVA Talk Preview
From Anna Munro
views
comments
From Anna Munro
This talk has captions. You can remove these by pressing CC on the video toolbar.
Name: Yun Li
Talk Title: The Use of Extreme Value Theory for Forecasting Long-Term Substation Maximum Electricity Demand
Abstract: Substation annual maximum electricity demand events are extreme, as customers respond to infrequent and extreme weather. Despite the extreme nature of annual maximum demand, the statistical theory of extreme values has only rarely, if ever, been applied. To support long term planning, utilities typically complete energy consumption and maximum demand forecasts, which are often conducted separately through two different process, leading to inconsistent trends and messages. To address these shortcomings, a point process approach from extreme value theory is proposed to model substation maximum demand as a function of trends in three common factors already required by utilities including customer count, average demand, and installed photovoltaic capacity. The point process model can be parameterized as a nonstationary generalized extreme value distribution with location and scale parameters dependent on the trends of these factors. As the generalized extreme value distribution governs the behaviors of block maxima (annual maximum demand) with forecast trends of three common factors, substation maximum demand can be estimated as per quantiles required by planning standards. Therefore, the proposed approach is not only realistic and flexible to forecast maximum demand but also ensures consistent outcomes and messaging between the two outputs from energy consumption and maximum demand forecasts.
This talk is an invited talk at EVA 2021. View the programme here.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.