Antoine Usseglio-Carleve EVA Talk Preview
From Anna Munro
views
comments
From Anna Munro
This talk has captions. You can remove these by pressing CC on the video toolbar.
Name: Antoine Usseglio-Carleve
Talk Title: Extreme expectile regression - Theory and applications
Abstract: Expectiles and quantiles can both be defined as the solution of minimization problems. Contrary to quantiles though, expectiles are determined by tail expectations rather than tail probabilities, and define a coherent risk measure. For these two reasons in particular, expectiles have recently started to be considered as serious candidates to become standard tools in actuarial and financial risk management. However, expectiles and their sample versions do not benefit from a simple explicit form, making their analysis signicantly harder than that of quantiles and order statistics. This difficulty is compounded when one wishes to integrate auxiliary information about the phenomenon of interest through a finite dimensional covariate, in which case the problem becomes the estimation of conditional expectiles. In this work, we firstly construct nonparametric kernel estimators of extreme conditional expectiles. We analyze the asymptotic properties of our estimators in the context of conditional heavy-tailed distributions, and realize that such a nonparametric approach is no longer suitable when the covariate dimension is too large. We thus also build a general theory for the estimation of extreme conditional expectiles in heteroscedastic regression models with heavy-tailed noise; our approach is supported by general results of independent interest on residual-based extreme value estimators in heavy-tailed regression models, and is intended to cope with covariates having a large but fixed dimension. We demonstrate how our results can be applied to a wide class of important examples, among which linear models, single-index models as well as ARMA and GARCH time series models. Our estimators are showcased on a numerical simulation study and on real sets of actuarial and financial data.
This talk is an invited talk at EVA 2021. View the programme here.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.