Causal Inference: Johannes Buck
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Johannes Buck
Talk Title: Properties and Consistency of QTree in Max-Linear Models Under Observational Noise
Abstract: Recently, we proposed the QTree algorithm for causal inference in river networks. Motivated by max-linear models, the algorithmn utilizes the quantile gap between differences of random variables to unravel causal relationships and achieves almost perfect recovery of the upper Danube basin, clearly outperforming existing methods.
In this talk, we present the qualitative features of the estimator. Assuming that the data comes from a max-linear Bayesian network with additive noise, we prove that QTree is consistent given some mild conditions on the tail of the noise distribution. This is joint work with Ngoc Mai Tran and Claudia Klüppelberg.
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.