Extremes of Stochastic Processes: Anna Ferreira
From Belle Taylor
views
comments
From Belle Taylor
This talk has been automatically captioned. You can remove these by pressing CC on the video toolbar.
Name: Anna Ferreira
Talk Title: Convergence of Extreme Values of Poisson Point Processes at Small Times
Abstract: We study the behaviour of large values of extremal processes at small times, obtaining an analogue of the Fisher-Tippet-Gnedenko Theorem. Thus, necessary and sufficient conditions for local convergence of such maxima, linearly normalised, to the Fr\'echet or Gumbel distributions, are established. Weibull distributions are not possible limits in this situation. Moreover, assuming second order regular variation, we prove local asymptotic normality for intermediate order statistics, and derive explicit formulae for the normalising constants for tempered stable processes. We adapt Hill's estimator of the tail index to the small time setting and establish its asymptotic normality under second order regular variation conditions, illustrating this with simulations. Applications to the fine structure of asset returns processes, possibly with infinite variation, are indicated.
Joint work with: Boris Buchmann and Ross A. Maller, Australian National University.
Research partially supported by ARC DP160104737, FCT: UIDB/04621/2020, UIDP/04621/2020, SFRH/BSAB/142912/2018.
This talk is a contributed talk at EVA 2021.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.