Victor Elvira: Graph discovery and Bayesian filtering in state-space models
From Belle Taylor
From Belle Taylor
This talk has captions. You can remove these by pressing CC on the video toolbar.
Modeling and inference in multivariate time series is central in statistics, signal processing, and machine learning, with applications in social network analysis, biomedical, and finance, to name a few. The linear-Gaussian state-space model is a common way to describe a time series through the evolution of a hidden state, with the advantage of presenting a simple inference procedure due to the celebrated Kalman filter.
A fundamental question when analyzing multivariate sequences is the search for relationships between their entries (or the modeled hidden states), especially when the inherent structure is a directed (causal) graph. In such context, graphical modeling combined with parsimony constraints allows to limit the proliferation of parameters and enables a compact data representation which is easier to interpret. We propose a novel expectation-maximization algorithm for estimating the linear matrix operator in the state equation of a linear-Gaussian state-space model.
This talk was part of the research day Interfaces between Statistics, Machine Learning and AI hosted by the Centre for Statistics and the Bayes Centre.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336, VAT Registration Number GB 592 9507 00, and is acknowledged by the UK authorities as a “Recognised body” which has been granted degree awarding powers.
Any views expressed within media held on this service are those of the contributors, should not be taken as approved or endorsed by the University, and do not necessarily reflect the views of the University in respect of any particular issue.
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh 2021 and may only be used in accordance with the terms of the licence.